# Proceso Metodológico Denominado Valor Presente Neto Ajustado al Riesgo (VPNAR), para la Evaluación Financiera de Proyectos de Inversión

# Methodological Process Named Risk-Adjusted Net Present Value (RANPV), for the Financial Evaluation of Investment Projects

René, Guigui-Gámez<sup>1</sup>y Héctor Salas-Harms<sup>2</sup>

# Resumen

Este artículo propone una metodología para la evaluación financiera de proyectos de inversión, que considere el riesgo, por medio de la homologación de la técnica del Valor en Riesgo. Se presenta una prueba empírica con un proyecto para demostrar su eficacia. Esto forma parte de una investigación más amplia que aplicó a 15 proyectos, obteniéndose resultados superiores a los de las metodologías tradicionales.

Se aplicó el método de Flujos de Efectivo Descontados, incorporando el procedimiento del Valor en Riesgo (VaR), con lo cual se proporciona un criterio de decisión, con base a un nivel de confianza predeterminado. Esto conduce al método del Valor Presente Neto Ajustado al Riesgo (VPNAR).

Las reglas de decisión son: el proyecto es aceptado con un nivel de confianza de 1-alfa si el VPN ajustado al riesgo (VPNAR) en la confianza dada es mayor o igual que cero; de lo contrario, es inaceptable.

Palabras clave: Finanzas Corporativas; Evaluación Financiera de Proyectos de Inversión; Valor en Riesgo.

### **Abstract**

This article proposes a measure for the financial evaluation of investment projects, which considers risk, through incorporating the Value at Risk technique. An empirical test on one project is



Ciencias Administrativas Teoría y Praxis

Artículo Recibido: 18 de Marzo de 2022

Artículo Aceptado: 12 de Juliol de 2022

<sup>1</sup> Doctorado en ciencias de la administración, profesor de asignatura, Fac. de ciencias empresariales, campus Cd. De México, Universidad Panamericana, México, análisis de proyectos y riesgo, rguigui@up.edu.mx, ORCID: 0000-0001-6667-1243

Proceso Metodológico Denominado Valor Presente Neto Ajustado al Riesgo (VPNAR), para la Evaluación Financiera de Proyectos de Inversión

presented to show its efficacy. This is part of a research which applied it to 15 projects, with results which proved superior to the ones produced by the traditional methodologies.

The Discounted Cash Flows method was applied, incorporating the Value at Risk (VaR) procedure, which would provide a decision criterion, based on a given confidence level. This leads to the Risk-Adjusted Net Present Value (RANPV) method.

The decision rules are the project is accepted with a confidence level of 1-alpha if the risk-adjusted NPV (RANPV) in the given confidence level is greater than or equal to zero; otherwise, it is unacceptable. Alternatively, the project is acceptable if the confidence level calculated at the point of zero VPN is equal to or greater than the predetermined confidence level; otherwise, it is unacceptable.

Key words: Corporate Finance; Capital Budgeting; Value at Risk.

Códigos JEL: G32; G3; G11

# I. Introducción

# 1. Planteamiento del problema

En la actualidad, en el mundo de los negocios dentro de un ambiente de Globalización, existen siempre las alternativas de emprender nuevas inversiones como estrategia corporativa para lograr una serie de metas.

Por lo anterior, el problema se traduce en la cantidad de proyectos que fracasan, por lo cual el planteamiento de este artículo es el buscar hacer una aportación teórica, metodológica y empírica para reducir este riesgo en el ámbito de las decisiones empresariales de la implementación de proyectos de inversión, a través de la consideración de una forma de evaluación alternativa en la concepción del riesgo.

Así, la aplicación de esta metodología a un proyecto de inversión, que aparece en este artículo, forma parte de una investigación más amplia, que aplicó la metodología a quince proyectos de inversión, obteniéndose resultados muy satisfactorios: mediante esta metodología se predijo correctamente el desempeño futuro de 14 de los 15 proyectos, mientras que bajo las metodologías tradicionales se habían aprobado y emprendido 5 proyectos, que eventualmente fracasaron.

# 2. Objetivo general

Proponer y validar empíricamente una metodología para evaluar proyectos de inversión, estableciendo como propuesta básica la aplicación de la estimación del Valor Presente Neto Ajustado al Riesgo (VPNAR) en la evaluación de proyectos de inversión, por medio de rangos de aceptación o rechazo, para mostrar que predice mejor el desempeño de los proyectos de inversión, que los métodos tradicionales. En el presente artículo, se ejemplificará la aplicación de esta metodología a un proyecto de inversión.

# II. El método Valor Presente Neto Ajustado el Riesgo (VPNAR). Análisis y justificación

El método VPNAR tiene como objetivo calcular si la esperanza de valor de los proyectos de inversión será mayor que la probabilidad de riesgo correspondiente a un nivel de confianza determinado.

A diferentes niveles de confianza, se obtendría el valor en riesgo, derivado de los flujos de efectivo y como consecuencia una medida de decisión denominada "Valor Presente Neto Ajustado

al Riesgo (VPNAR), en donde la variable aleatoria será el Valor Presente Neto derivado de dichos flujos.

$$VPNAR = E(VPN) - VAPR$$
 [1]  
 $E(VPN) = \sum_{i=1}^{n} VPNi * Pi$  [2]

E (VPN) = Valor esperado de la distribución de probabilidad del VPN, derivada de la simulación realizada de los flujos de efectivo de cada proyecto.

P<sub>i</sub> = Probabilidad de Ocurrencia de Escenarios, en base a la simulación.

$$VPN = -Ao + \left[\sum_{i=1}^{n} \frac{FCFi}{(1+WACCi)^{n}}\right]$$
 [3]

De esto se desprende:

A0 = Inversión del Proyecto (Fija más Capital de Trabajo)

FCF<sub>i</sub> = Flujo Libre de Caja del Período i

Se determina el Flujo Libre de Caja proyectado a un periodo de años razonable

WACC<sub>i</sub> = Costo Promedio Ponderado de Capital

$$Wacc = \left[r_P * \left(\frac{P}{I} * (1 - Tc)\right) + \left(r_C * \left(\frac{C}{I}\right)\right)\right]$$
 [4]

I = Inversión Total

rp = Costo del financiamiento del pasivo

Tc = Tasa Fiscal Corporativa

rc = Costo del Capital Accionario

P = Pasivo

C = Capital Accionario

VAPR: Valor ajustado por riesgo, fundamentado en la técnica del Valor en Riesgo (VaR). Medida que refleja la volatilidad o pérdida máxima del Valor Presente Neto Esperado del proyecto, derivado de una distribución de probabilidad, a un determinado nivel de confianza, que, en cada caso, corresponderá al nivel de probabilidad de generación de valor del sector correspondiente a cada proyecto de inversión que se esté evaluando.

Nivel de confianza, o certidumbre del sector correspondiente al proyecto, al cual se desea determinar la exposición al riesgo. Nivel de confianza o probabilidad de que el VPN del sector sea ≥ 0 y por lo tanto es lo máximo de riesgo que podrá tener el proyecto evaluado, es decir que será el nivel de confianza de la pérdida máxima de la E (VPN) del proyecto.

Finalmente, el Valor en Riesgo (VaR) se obtiene siguiendo el método de Delta Normal, como se muestra a continuación.

$$VAPR = \sigma_{E(VPN)*\mathbb{Z}_{\alpha}}$$
 [5]

 $\sigma_{E(VPN)}$  = Desviación estándar de la distribución del VPN.

Indica el grado de volatilidad del VPN, derivada de los flujos de efectivo

$$\sigma_{E(VPN)} = \sqrt{\sum_{i=1}^{n} (VPN_i - E(VPN))^2 * P_i}$$
 [6]

 $P_i$  = Probabilidad de Ocurrencia de Escenarios, con base a la simulación

 $\mathbf{Z}_{\alpha} = Valor Z$ . Nivel de Confianza deseado (no. de desvs. Est.) de alf a.

Máximo de Riesgo

Por lo tanto, se tiene la siguiente expresión de Valor Presente Neto Ajustado al Riesgo

# $\begin{aligned} & \textbf{Gráfica No. 1} \\ & Flujo \ del \ modelo \end{aligned} \\ \hline & \textbf{VPNAR} = -\textbf{A}_0 + \left[\frac{\textbf{FCF}_1}{(1 + \textit{Wacc})^1} * \textbf{P}_1 + \frac{\textbf{FCF}_2}{(1 + \textit{Wacc})^2} * \textbf{P}_2 + \cdots + \frac{\textbf{FCF}_n}{(1 + \textit{Wacc})^n} * \textbf{P}_n\right] - \sqrt{\sum_{i=1}^n (\textbf{VPN}_i - \textbf{E}(\textbf{VPN}))^2 * \textbf{P}_i} * \textbf{Z}_\alpha \end{aligned} \\ & \text{indicador fundamental para la toma de decisiones en inversiones de capital}$ $\begin{aligned} & \textbf{VPNAR} \geq \textbf{0} \end{aligned}$ $\begin{aligned} & \textbf{Aprueba el proyecto} \end{aligned} \qquad \begin{aligned} & \textbf{Decisión} \\ & \textbf{en} \\ & \text{función al riesgo} \end{aligned} \end{aligned}$

Esta medida se utilizaría como indicador fundamental para la toma de decisiones en inversiones de capital, ya que indicaría la aceptación o rechazo del proyecto en función al riesgo.

 $SiVPNAR \ge 0$  Entonces se Aprueba el Proyecto SiVPNAR < 0 Se Rechaza el Proyecto

# III. Procedimiento propuesto para la evaluación de un proyecto de inversión utilizando la metodología VPNAR

1. Obtener la información sobre los factores del mercado pertinentes al desempeño del proyecto, con el objeto de obtener modelos para proyección de las variables significativas a cada proyecto y así poder efectuar las proyecciones de los flujos de efectivo. Centralizar la información sobre las variables relacionadas al proyecto específico (por ejemplo, el crecimiento del mercado del producto, el precio del producto, y los costos de materiales). Identificar la distribución de cada variable. Entonces, construir un modelo de regresión con estos factores de acuerdo con la siguiente expresión:

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni} + \epsilon_i$$
 [7]

Dónde:

 $y_i$ : Variable relacionada al Proyecto, por ejemplo, precio del producto, nivel de producción, costos, etc.

α: Constante de la regresión

 $\beta_{1,2,\dots,n}$ : Coeficientes de la regresión

 $x_{1i,2i,...,ni}$ : Factores del mercado 1 a n en el tiempo i

 $\epsilon_i$ : Error

Si el modelo propuesto se ajusta, puede utilizarse para simular las proyecciones de Flujos de Caja futuros. Si no, revisar su modelo.

- 2. Calcular el WACC y determinar el Flujo de Caja Libre Tendencial3, con base en los parámetros determinados en el punto anterior.
- 3. Simular 100,000 proyecciones de Flujos de Caja utilizando las variables sensibles del proyecto, determinando el tipo de distribución de cada variable. Se sugiere el Simulador Crystal Ball o Arroba @ Risk.
- 4. Examinar si la distribución de los Valores Presentes Netos derivada de todas las iteraciones sigue una distribución normal, usando las técnicas de Anderson-Darling y/o Kolmogorov-Smirnov antes de continuar con los procedimientos paramétricos.
- 5. Determinar el Valor Presente Neto Esperado y la Desviación Estándar, derivados de la simulación.
- 6. Determinar el Valor Ajustado por Riesgo del proyecto, utilizando el nivel de confianza del sector de la economía al que corresponda.

$$VAPR = \sigma_{E(VPN)* \mathbb{Z}_{\alpha}}$$

7. Calcular el VPNAR del proyecto.

$$VPNAR = E(VPN) - VAPR$$

El proyecto de inversión deberá ser aceptado, si el VPNAR ≥ 0.

# IV. Evaluación de un proyecto del sector industrial. Una prueba empírica para mostrar la eficiencia del método

# 1. Resultados reales expost

En las tablas 1 y 2 aparecen el monto de la inversión inicial en el proyecto, y los flujos de efectivo reales del proyecto.

Tabla 1 Inversión del proyecto

| Proyecto              | Producción de Grúas Viajeras y Estructuras<br>Metálicas, de la Industria Automotriz. |
|-----------------------|--------------------------------------------------------------------------------------|
| Inversión Fija        | \$4'617,000.00                                                                       |
| Capital de<br>Trabajo | \$5'414,000.00                                                                       |
| INVERSIÓN<br>TOTAL    | \$10'031,000.00                                                                      |

Fuente. Autor con base a la información proporcionada de la empresa Elaborado por: Elaboración propia

4.40

<sup>&</sup>lt;sup>3</sup> Flujo de caja proyectado base para la simulación.

Tabla 2

Flujo de efectivo real expost del proyecto del sector industrial

Empresa productora de Grúas Viajeras y Estructuras Metálicas para la Industria

Automotriz

FREE CASH FLOW Ex-Post

# (Cifras en Miles de Pesos)

|                                     | 0         | 1        | 2       | 3        | 4       | 5       |
|-------------------------------------|-----------|----------|---------|----------|---------|---------|
| INVERSIÓN                           | -\$4,617  |          |         |          |         |         |
| INGRESOS                            |           | \$15,261 | \$9,152 | \$10,250 | \$9,701 | \$9,500 |
| Costo Variable Total                |           | \$5,980  | \$4,549 | \$5,227  | \$5,141 | \$5,225 |
| UTILIDAD MARGINAL                   |           | \$9,281  | \$4,603 | \$5,023  | \$4,560 | \$4,275 |
| Costos Fijos                        |           | \$4,821  | \$2,451 | \$3,636  | \$3,636 | \$3,850 |
| Depreciación                        |           | \$112    | \$39    | \$75     | \$94    | \$100   |
| UTILIDAD ANTES DE IMPUESTOS         |           | \$4,348  | \$2,113 | \$1,312  | \$830   | \$325   |
| Impuestos                           |           | \$314    | \$502   | \$802    | \$249   | \$98    |
| UTILIDAD DESPUES DE IMPUESTOS       |           | \$4,034  | \$1,611 | \$510    | \$581   | \$228   |
| Depreciación                        |           | \$112    | \$39    | \$75     | \$94    | \$100   |
| FLUJO DE EFECTIVO OPERATIVO         |           | \$4,146  | \$1,650 | \$585    | \$675   | \$328   |
| Movimientos de Capital de Trabajo   | -\$5,414  | -\$2,444 | \$1,024 | -\$455   | \$631   | \$270   |
| Recuperación del Capital de Trabajo |           |          |         |          |         | \$4,440 |
| Valor de Rescate                    |           |          |         |          |         | \$0     |
| FLUJO NETO DE EFECTIVO              | -\$10,031 | \$6,590  | \$626   | \$1,040  | \$44    | \$4,498 |

Fuente. Estados Financieros del proyecto del sector industrial de la empresa en estudio. Elaborado por: Elaboración propia.

Tabla 3 Indicadores financieros reales expost del proyecto

| Valor Presente (VP)           | \$10,004 |
|-------------------------------|----------|
| Valor Presente Neto (VPN)     | -\$ 27   |
| Tasa Interna de Retorno (TIR) | 10.38%   |
| WACC Promedio                 | 10.97 %  |

Fuente. Autor. Elaborado por: Elaboración propia.

Como se puede observar en la tabla anterior, los resultados muestran que este proyecto de inversión correspondiente al sector industrial, en realidad fracasó, ya que ha mostrado un Valor Presente Neto negativo del orden de 27 mil pesos y una Tasa Interna de Rendimiento financiero del 10.38%, por abajo del costo del capital.

# 2. Evaluación de este mismo proyecto por el método Valor Presente Neto Ajustado al Riesgo (VPNAR)

En esta fase se ha determinado el flujo libre de caja tendencial del proyecto (tabla 4), es decir de acuerdo con la situación normal del periodo proyectado. Con base a éste se efectuará la simulación tomando ciertas variables de cambio en los flujos que se presentarán más adelante.

Por otra parte, se obtiene el costo de capital como tasa de descuento (tabla 5).

Todo lo anterior en base a los modelos presentados anteriormente.

**Tabla 4**Determinación del flujo base o tendencial del proyecto

| Empresa Productora de Grúas Viajeras y Estructuras Metálicas para la Industria Automotriz |            |             |         |          |          |          |
|-------------------------------------------------------------------------------------------|------------|-------------|---------|----------|----------|----------|
| FLUJO DE EFECTIVO TENDENCIAL                                                              |            |             |         |          |          |          |
|                                                                                           | (Cifras en | Miles de Pe | sos)    |          |          |          |
|                                                                                           | 0          | 1           | 2       | 3        | 4        | 5        |
| INVERSIÓN                                                                                 | -\$4,617   |             |         |          |          |          |
| INGRESOS                                                                                  |            | \$8,134     | \$9,874 | \$12,011 | \$14,640 | \$17,884 |
| Costo Variable Total                                                                      |            | \$4,742     | \$5,669 | \$6,791  | \$8,152  | \$9,807  |
| Utilidad Marginal                                                                         |            | \$3,392     | \$4,205 | \$5,220  | \$6,488  | \$8,077  |
| Costos Fijos                                                                              |            | \$2,034     | \$2,034 | \$2,034  | \$2,034  | \$2,034  |
| Depreciación                                                                              |            | \$923       | \$923   | \$923    | \$923    | \$923    |
| UTILIDAD ANTES DE IMPUESTOS                                                               |            | \$435       | \$1,248 | \$2,263  | \$3,531  | \$5,120  |
| Impuestos                                                                                 |            | \$131       | \$374   | \$679    | \$1,059  | \$1,536  |
| UTILIDAD DESPUES DE IMPUESTOS                                                             |            | \$305       | \$874   | \$1,584  | \$2,472  | \$3,584  |
| Depreciación                                                                              |            | \$923       | \$923   | \$923    | \$923    | \$923    |
| FLUJO DE EFECTIVO OPERATIVO                                                               |            | \$1,228     | \$1,797 | \$2,507  | \$3,395  | \$4,507  |
| Movimientos de Capital de Trabajo                                                         | -\$5,414   | \$1,084     | \$1,313 | \$1,593  | \$1,936  | \$0      |
| Recuperación del Capital de Trabajo                                                       |            |             |         |          |          | \$11,340 |
| Valor de Rescate                                                                          |            |             |         |          |          | \$1,385  |
| FLUJO NETO DE EFECTIVO                                                                    | -\$10,031  | \$143       | \$484   | \$915    | \$1,459  | \$17,232 |

Fuente. Autor.

Elaborado por: Elaboración propia.

Tabla 5 Cálculo del WACC del Proyecto del Sector Industrial, e indicadores financieros

| Estructura Financiera Promedio         | Porcentaje | Costo  | Costo<br>Marginal | Costo<br>Ponderado |
|----------------------------------------|------------|--------|-------------------|--------------------|
| Pasivo                                 | 19.84%     | 19.72% | 13.80%            | 2.74%              |
| Capital                                | 80.16%     | 13.13% | 13.13%            | 10.53%             |
|                                        |            |        |                   | 13.27%             |
| INDICADORES                            |            |        |                   |                    |
| Tasa Interna de Rendimiento Financiero |            |        |                   | 16.12%             |
| Valor Presente                         |            |        |                   | \$11,261           |
| Valor Presente Neto                    |            |        |                   | \$1,230            |
| Costo Promedio Ponderado de Capital    |            |        |                   | 13.27%             |

Fuente. Autor. Elaborado por: Elaboración propia.

Como se puede observar, este proyecto se debería de aceptar de acuerdo con los resultados obtenidos derivado del flujo de efectivo tendencial, sin embargo, ahora se efectuará un análisis de su exposición al riesgo a través de la aplicación de la metodología propuesta del VPNAR, considerando el nivel de confianza para el sector industrial del 88.79%4, y presentándose posteriormente sus resultados definitivos.

# 3. Determinación de las variables para la simulación

Para la elaboración del flujo de efectivo tendencial del proyecto, mismo que se mostró anteriormente, se tomaron en consideración las siguientes variables:

Tabla 6 Variables del Proyecto del Sector Industrial

- A) Producción de Vehículos Automotores
- B) Precio de Venta
- C) Costo Variable Unitario

Fuente. Autor. Elaborado por: Elaboración propia.

<sup>4</sup> Probabilidad de que las empresas del sector industrial generen valor y que tengan éxito, calculado a partir de la valuación de las empresas de dicho sector económico, que cotizan en la BMV. Dividiendo la Esperanza de Valor que generan dichas empresas entre la volatilidad, obteniendo así la probabilidad de que el valor sea mayor que cero.

Los productos de este proyecto son fundamentalmente grúas viajeras y estructuras metálicas de diferentes tipos. Ambos demandados por empresas de la industria automotriz. Para poder construir el flujo de efectivo base del proyecto, se efectuó, en primer lugar un pronóstico de la variable de tipo macro (tablas 7, 8 y 9), es decir la producción automotriz, tomando como variables independientes explicativas las exportaciones automotrices, las importaciones de hierro y acero y las ventas al mayoreo de vehículos, todo ello por medio de una serie histórica de tiempo mensual a lo largo de diez años anteriores a la implementación del proyecto, con el objeto de proyectarlas para los años de ejecución del mismo, por medio de un programa EViews 7 y así efectuar la simulación a través de un simulador Crystal Ball; y en segundo lugar el pronóstico de las dos segundas variables internas del proyecto, es decir el precio y el costo variable, de acuerdo a información proporcionada por la propia empresa (tablas 10 y 11).

Una vez obtenido lo anterior, se correlacionaron dichas variables con el nivel de producción del proyecto original, para así obtener los pronósticos fuente de la corrida financiera.

Tabla 7 El Modelo de Regresión

Modelo de regresión del crecimiento de la producción de la industria automotriz del proyecto del Sector Industrial

| El Modelo de Regresión          |          |
|---------------------------------|----------|
| Constante                       | 8.600995 |
| Exportaciones automotrices      | 2.48E-05 |
| Importaciones de hierro y acero | 7.88E-05 |
| Venta al mayoreo de vehículos   | 0.000129 |

Fuente. Autor, con base a datos del INEGI. Elaborado por: Elaboración propia.

Tabla 8 Pronóstico de la Producción Automotriz, con base a las exportaciones automotrices, las importaciones de hierro y acero y a las ventas al mayoreo de vehículos

| PRONÓSTICO          |                                                   | Estimación de<br>Crecimiento Pro |                                    | el índice de                        |
|---------------------|---------------------------------------------------|----------------------------------|------------------------------------|-------------------------------------|
| AÑOS<br>Proyectados | Producción de vehículos automotores (Base índice) | Exportaciones                    | Importaciones<br>de hierro y acero | Venta al<br>mayoreo de<br>vehículos |
| 1                   | 206.9                                             | \$2,453,351.49                   | \$303,549.69                       | 880,052                             |
| 2                   | 227.4                                             | \$2,896,000.04                   | \$327,206.78                       | 939,560                             |
| 3                   | 250.6                                             | \$3,418,513.93                   | \$352,707.59                       | 1,003,091                           |
| 4                   | 276.8                                             | \$4,035,302.94                   | \$380,195.81                       | 1,070,919                           |
| 5                   | 306.5                                             | \$4,763,376.76                   | \$409,826.31                       | 1,143,333                           |

Fuente: Autor.

Realizado por: Elaboración propia.

Tabla 9 Pronóstico del Índice de Producción de la Industria Automotriz del Proyecto del Sector Industrial

| Pronóstico del Índice de Producción de Vehículos<br>Automotores |              |          |  |  |
|-----------------------------------------------------------------|--------------|----------|--|--|
| Año<br>Proyectados                                              | l Producción |          |  |  |
| 1                                                               | 206.9        | 1.084592 |  |  |
| 2                                                               | 227.4        | 1.086772 |  |  |
| 3                                                               | 250.6        | 1.089008 |  |  |
| 4                                                               | 276.8        | 1.091297 |  |  |
| 5                                                               | 306.5        | 1.093629 |  |  |

Fuente. Autor.

Realizado por: Elaboración propia.

Tabla 10 Precio de venta promedio del proyecto del Sector Industrial

| AÑOS<br>Proyectados | Producción de la<br>Planta Base (factor) | Precio de<br>Venta |
|---------------------|------------------------------------------|--------------------|
| 1                   | 0.108459                                 | \$75,000.00        |
| 2                   | 0.117870                                 | \$83,772.01        |
| 3                   | 0.128362                                 | \$93,569.98        |
| 4                   | 0.140081                                 | \$104,513.94       |
| 5                   | 0.153197                                 | \$116,737.89       |

Fuente. Autor. Realizado por: Elaboración propia.

La producción está tomada con base a la capacidad instalada del proyecto y el crecimiento se relaciona con el índice de producción ya determinado. Por otra parte, el precio de venta se relaciona con el índice de crecimiento de precios promedio anual de vehículos por el mismo período, el cual fue calculado por 1.11696007.

Tabla 11 Costo variable unitario promedio del proyecto del Sector Industrial

| AÑOS<br>Proyectados | Costo Variable Unitario |
|---------------------|-------------------------|
| 1                   | \$43,725.00             |
| 2                   | \$48,097.50             |
| 3                   | \$52,907.25             |
| 4                   | \$58,197.98             |
| 5                   | \$64,017.77             |

Fuente. Autor.

Realizado por: Elaboración propia.

Para la elaboración de la tabla anterior, se consideró un costo variable unitario promedio inicial de \$39,750.00, relacionándolo con el índice de crecimiento de precios promedio anual de materias primas.

Para la ejecución de la simulación en el software Crystal Ball, se consideraron como variables de entrada de iteración aleatoria, afectando las demás variables, para la creación de los diferentes flujos de efectivo, y así obtener en VPN esperado, las siguientes:

Tabla 12 Parámetros de las variables de la simulación del proyecto del Sector Industrial

|                   |           | Tipo de      | Parámetro         |                        |          |           |
|-------------------|-----------|--------------|-------------------|------------------------|----------|-----------|
| Variable          |           | Distribución | Valor<br>esperado | Desviación<br>Estándar | Mínimo   | Máximo    |
| Costo Variable U  | Jnitario  | Normal       | \$39,750.00       | \$1,158.00             |          |           |
| Índice            | Promedio  |              |                   |                        |          |           |
| Producción        | Industria | Beta         | 1.084592          |                        | 0.976133 | 1.1930512 |
| Automotriz, año   | 1         |              |                   |                        |          |           |
| Índice            | Promedio  |              |                   |                        |          |           |
| Producción        | Industria | Beta         | 1.086772          |                        | 0.98     | 1.20      |
| Automotriz, año 2 |           |              |                   |                        |          |           |
| Índice            | Promedio  |              |                   |                        |          |           |
| Producción        | Industria | Beta         | 1.089008          |                        | 0.98     | 1.20      |
| Automotriz, año   | 3         |              |                   |                        |          |           |
| Índice            | Promedio  |              |                   |                        |          |           |
| Producción        | Industria | Beta         | 1.091297          |                        | 0.98     | 1.20      |
| Automotriz, año 4 |           |              |                   |                        |          |           |
| Índice            | Promedio  |              |                   |                        |          |           |
| Producción        | Industria | Beta         | 1.093629          |                        | 0.98     | 1.20      |
| Automotriz, año   | 5         |              |                   |                        |          |           |

Fuente. Autor. Realizado por: Elaboración propia.

La distribución utilizada para dichas variables fue de tipo Normal para el Costo Variable Unitario y Beta para los Índices de Producción de la Industria Automotriz.

Tabla 13

| Series de datos:                                  | Producción de vehículos automotores (Base indice) |
|---------------------------------------------------|---------------------------------------------------|
| Distribución:                                     | 242.59                                            |
| Mejor ajuste:                                     | Beta                                              |
| Anderson-Darling                                  | 0.5139                                            |
| Valor p:                                          |                                                   |
| Correlaciones:                                    | Producción de vehículos automotores (Base indice) |
| Producción de vehículos automotores (Base indice) | 1.0000                                            |

# 4. Indicadores y resultados

Aplicando la metodología anteriormente mostrada del Valor Presente Neto Ajustado al Riesgo, (VPNAR), tenemos los siguientes resultados de la evaluación de este proyecto de inversión:

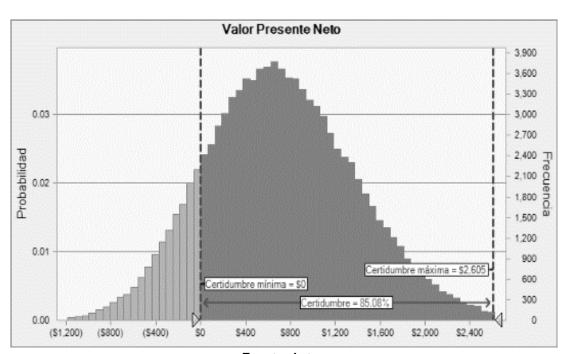

El Valor Presente Neto Esperado y desviación estándar de la distribución de la variable Valor Presente derivada de la distribución de los flujos de efectivo de la simulación, se muestra a continuación.

Tabla 14 Resultados de la evaluación del proyecto del Sector Industrial

| Resultados de la Evaluación del proyecto del Sector Industrial |        |
|----------------------------------------------------------------|--------|
| E(VPN)                                                         | \$718  |
| Volatilidad                                                    | \$679  |
| P[VPN≥0]                                                       | 85.08% |

Fuente: Autor Realizado por: Elaboración propia.

**GRÁFICA NO. 2** Gráfico del VPN y Certidumbre del proyecto del Sector Industrial



Fuente. Autor. Realizado por: Elaboración propia. Como se puede observar en la gráfica de distribución del VPN, derivada de la simulación efectuada, el nivel de certidumbre es del 85.08%, mismo que deberá ser comparado con el nivel de éxito del sector industrial.

Por lo tanto, se deberá calcular el VPNAR del proyecto tomando en consideración como nivel de confianza el del sector industrial, que es de 88.79%. Entonces tenemos el siguiente resultado:

Tabla 15
Resultados del Método VPNAR del Proyecto Evaluado Correspondiente al Sector Industrial

| Aplicación Método de Evaluación |             |  |
|---------------------------------|-------------|--|
| E(VPN)                          | \$718       |  |
| Volatilidad                     | \$679       |  |
| Nivel de Éxito del Sector       | 88.79%      |  |
| Valor Z                         | 1.215435592 |  |
| Valor Ajustado por Riesgo       | \$826       |  |
| VPNAR                           | -\$108      |  |

Fuente. Autor. Realizado por: Elaboración propia

### V. Conclusion

Como se puede apreciar (tabla 15), el desempeño del proyecto arroja un nivel de certidumbre del 85.08%, lo cual queda por debajo del nivel mínimo para generar valor del sector, es decir 88.79%, por tanto, si se mide el VPNAR a dicho nivel del sector, se observa que el VPNAR sería negativo por **-\$108** (cifras en miles) por lo que debería rechazarse el proyecto.

En la realidad, como ya se observó anteriormente, este proyecto se implementó y fracasó, por lo que no debía haberse llevado a cabo. Por lo tanto, queda probada de manera empírica, con la evaluación de este proyecto, la eficiencia del método de evaluación. Este resultado muestra, por lo tanto, que esta forma de medir el riesgo a través de la metodología VPNAR, permite pronosticar de una manera superior el futuro desempeño de un proyecto de inversión.

### Referencias

- AGGARWAL, R. (1980). Corporate Use of Sophisticated Capital Budgeting techniques: A Strategic Perspective and a Critique of Survey Results. Interfaces, Vol. 10, No. 2, 31-34.
- AHMADI-JAVIS, A. (2012). Addendum to: Entropic Value-at-Risk: Anew Coherent Risk Measure. Journal of Optimization Theory and Applications, New York.
- ANDRÉN, N., JANKENSGÅRD, H., y OXELHEIM, L. (2005). Exposure-based Cash-Flow-at-Risk under Macroeconomic Uncertainty. Estocolmo Suiza.: THE Research Institute of Industrial Economics. Working Paper No. 635.

- ARMEANU, D., y LACHE, L. (2009). The NPV Criterion for Valuing Investments under Uncertainty. Economic Computation and Economic Cybernetics Studies and Research, Vol. 43, No. 4.
- BABUSIAUX, D., y PIERRU, A. (2009). Capital Budgeting, Investment Project Valuation and Financing Mix: Methodological Proposals. European Journal of Operational Research, Vol. 135, 326-337.
- BAZZANI, C., y CRUZ, E. (2008). Análisis de Riesgo en Proyectos de Inversión un Caso de Estudio. Scientia et Technica. Año XIV, No. 38. Universidad Tecnológica de Pereira. España., 309-314.
- BELENKY, V. Z. (2012). Investment Project Evaluation Under Risk and Uncertainty (Expected Effect Theory). Mathematics CEMI RAS.
- BESLEY, S., y BRIGHAM, E. (2009). Funadamentos de Administración Financiera. México, DF: CENGAGE Learning.14<sup>a</sup> Edición.
- BIERMAN, H., y SMIDT, S. (1993). The Capital Budgeting Decision. Economic Analysis of Investments Projects. Upper Saddle River, New Jersey: Prentice Hall, Inc.
- CONSTANTIN, I., EDUARD, L., y TILINA, D. (2009). Risk Analysis in Investments Projects. Viene, Austria.: Symposium.
- CONTRERAS, E. (2005). Aplicación del VaR (Valor en Riesgo) a un Proyecto de Concesión de Obras de Riego. Santiago de Chile.: Universidad de Chile. III Coloquio Predoctoral Iberoamericano.
- CONTRERAS, E., y CRUZ, J. M. (2006). No más VAN: el Value at Risk (VaR) del VAN, una nueva metodología para análisis de riesgo. Revista Trend Management, Vol. 8.
- CONTRERAS, E., y CRUZ, J. M. (2009). Medición de Riesgos: el Concepto de Value at Risk (VaR). Revista Dinero, No. 19.
- COPELAND, T., WESTON, J., y SHASTRI, K. (2005). Financial Theory and Corporate Policy. EUA: Pearson, Addison Wesley.
- COSS BU, R. (1987). Análisis y Evaluación de Proyectos de Inversión. Mexico, DF: Limusa.
- CRUM, R., y DERKINDEREN, F. (1981). Capital Budgeting Under Conditions of Uncertainty. Finance & Banking. Series.
- DELGADO, J., VELA, R., y QUINTERO, H. (2011). El Riesgo en Proyectos Agropecuarios de Inversión y Alternativas para su dimención. Banco de México, FIRA. Boletín Informativo. No. 243. Volumen XXV. Año XXIV.
- DUFFIE, D., y PAN, J. (2001). Analytical Value-at-Risk with Jumps and Credit Risk. Finance and Stochastic. , Stanford, California, USA.
- EHRHARDT, M., y BRIGHAM, E. (2007). Finanzas Corporativas. MEXICO: International Thomson. Segunda Edición.

- FERNÁNDEZ, V. (2002). Valor en Riesgo (VaR) calculado por simulación histórica. Pontificia Universidad Católica de Chile.
- FROOT, K., y STEIN, J. (1998). Risk Adjusted Discount Rates and Capital Budgeting Under Uncertainty. Journal of Financial Economics.
- GARCÍA, F., y ROMERO, R. (2009). Caracterización y Análisis de Modelos de Evaluación Económica de Proyectos de Inversión bajo Incertidumbre. Revista Ingeniería Industrial Año 8 N° 1 Primer Semestre, 35-50.
- GITMAN, L., y MERCURIO, V. (1982). Cost of Capital Techniques Used by Major U.S. Firms: Survey and Analysis of Fortune's 1000. Financial Management, Vol.11. No. 4, 21-29.
- JORION, P. (1999). Valor en Riesgo, Contabilidad y finanza. Limusa.
- JORION, P. (2007). Value at Risk- The New Benchmark for Managing Financial Risk. Financial Markets and Portfolio Management, Suiza.
- LAMOTHE, P., y CONTRERAS, E. (2008). Metodologías basadas en VaR para el Análisis de Riesgo en Proyectos de Inversión. Chile.: Departamento de Ingeniería Industria. Universidad de Chile.
- LARA, A. (2009). Medición y Control de Riesgos financieros. MÉXICO: Limusa.
- NELSON, J. (2000). Opposing Discounted Cash Flow Analysis. Defense Counsel Journal, Vol. 67, No. 4, EUA.
- PETRY, G. (1975). Effective Use of Capital Budgeting Tools. Business Horizons, Vol. 18, No.5, 57-65.
- ROSS, S., WESTERFIELD, R., JAFFE, J., y JORDAN, B. (2008). Finanzas Corporativas. MÉXICO, DF: Mc Graw Hill.
- SAAVEDRA, C. G. (1998). Evaluación de Riesgos. Centro de Estudios Monetarios Latinoamericanos.
- SÁNCHEZ, L. (2010). Análisis de Riesgo en Proyectos de Inversión. Pensamiento Crítico No. 11. 129-138.
- SAPAG, N. (2011). Proyectos de Inversión. Formulación y Evaluación. Chile: Pearson.
- SCHALL, L., y SUNDEM, G. (1980). Capital Budgeting Methods and Risk: A Further Analysis. Financial Management., 7-11.
- VAN HORNE, J., y WACHOWICZ, J. (2002). Fundamentos de Administración Financiera. MÉXICO: Pearson.
- VELEZ-PAREJA, I. (2007). "Constructing Cash Flows". Social Science Research Network, No. 891968.
- YE, S., y TIONG, R. (2000). NPV-AT- Risk. Method in Infrastructure Project Investment Evaluation. Journal of Construction Engineering and Management. , 227-233.